The Inverse Lambda Calculus Algorithm for Typed First Order Logic Lambda Calculus and Its Application to Translating English to FOL

نویسندگان

  • Chitta Baral
  • Marcos Alvarez Gonzalez
  • Aaron Gottesman
چکیده

In order to answer questions and solve problems that require deeper reasoning with respect to a given text, it is necessary to automatically translate English sentences to formulas in an appropriate knowledge representation language. This paper focuses on a method to translate sentences to First-Order Logic (FOL). Our approach is inspired by Montague’s use of lambda calculus formulas to represent the meanings of words and phrases. Since our target language is FOL, the meanings of words and phrases are represented as FOL-lambda formulas. In this paper we present algorithms that allow one to construct FOL-lambda formulas in an inverse manner. Given a sentence and its meaning and knowing the meaning of several words in the sentence our algorithm can be used to obtain the meaning of the other words in that sentence. In particular the two algorithms take as input two FOL-lambda formulas G and H and compute a FOL-lambda formula F such that F with input G, denoted by F@G, is H; respectively, G@F = H. We then illustrate our algorithm and present soundness, completeness and complexity results, and briefly mention the use of our algorithm in a NL Semantics system that translates sentences from English to formulas in formal languages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A theory of program refinement

We give a canonical program refinement calculus based on the lambda calculus and classical first-order predicate logic, and study its proof theory and semantics. The intention is to construct a metalanguage for refinement in which basic principles of program development can be studied. The idea is that it should be possible to induce a refinement calculus in a generic manner from a programming ...

متن کامل

Translating HPSG-Style Outputs of a Robust Parser into Typed Dynamic Logic

The present paper proposes a method by which to translate outputs of a robust HPSG parser into semantic representations of Typed Dynamic Logic (TDL), a dynamic plural semantics defined in typed lambda calculus. With its higher-order representations of contexts, TDL analyzes and describes the inherently inter-sentential nature of quantification and anaphora in a strictly lexicalized and composit...

متن کامل

Translating Specifications in a Dependently Typed Lambda Calculus into a Predicate Logic Form

Dependently typed lambda calculi such as the Edinburgh Logical Framework (LF) are a popular means for encoding rule-based specifications concerning formal syntactic objects. In these frameworks, relations over terms representing formal objects are naturally captured by making use of the dependent structure of types. We consider here the meaning-preserving translation of specifications written i...

متن کامل

Quantum Lambda Calculus

We discuss the design of a typed lambda calculus for quantum computation. After a brief discussion of the role of higher-order functions in quantum information theory, we define the quantum lambda calculus and its operational semantics. Safety invariants, such as the no-cloning property, are enforced by a static type system that is based on intuitionistic linear logic. We also describe a type i...

متن کامل

Complexity of the higher order matching

We use the standard encoding of Boolean values in simply typed lambda calculus to develop a method of translating SAT problems for various logics into higher order matching. We obtain this way already known NP-hardness bounds for the order two and three and a new result that the fourth order matching is NEXPTIME-hard.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012